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Abstract— Object detection and semantic segmentation are
two of the most fundamental tasks in computer vision. When
addressed jointly, it can be applied to many fields such
as autonomous driving. While most of the existing works
mainly rely on sharing the deep convolutional features for
jointly dealing with the two tasks, we exploit a much deeper
connection between object detection and semantic segmen-
tation. We observe that the feature maps used by Region
Proposal Networks (RPN) resemble a dense class-agnostic (i.e.,
foreground/background) segmentation map. We exploit this
observation to improve the functioning of RPN as well as
improve performance for semantic segmentation. We propose
a framework called SegRPN where we endow Faster-RCNN
with a semantic segmentation branch using a shared Feature
Pyramid Network (FPN) backbone. The semantic segmentation
branch is facilitated by a class agnostic segmentation module,
which serves two purposes: (i) it provides a scale specific
objectness prior for semantic segmentation and (ii) it supports
the RPN in the segmentation branch which improves the
functioning of the RPN in the detection branch. Experimental
results on Cityscapes dataset demonstrate that the proposed
SegRPN is able to improve both object detection and semantic
segmentation results.

I. INTRODUCTION

The task of object detection is to identify all objects of
predefined categories in an image and localize them via
bounding boxes. Semantic segmentation operates at a finer
scale where the goal is to assign a class label to each pixel.
While there has been significant progress in the individual
tasks of object detection [1], [2], [3], [4], [5], [6] and
semantic segmentation [7], [8], [9], [10], [11], only few
works have tackled them jointly. Existing approaches could
benefit from solving these tasks jointly [12], [13], [14], [15].
For example, object detection should be easier if we know the
semantics of the scene at the class-agnostic level, i.e. which
pixels belong to the objects (e.g., car, person) and which
belong to the background (e.g., sky, building). Conversely,
semantic segmentation should be easier if we know where
the object of interest is. In fact, it has been shown in the
past that semantic segmentation usually used as a multi-
task supervision can help object detection [16], [17], [18],
and object detection used as a prior knowledge can improve
semantic segmentation [19], [18]. Therefore, these two tasks
are highly related.

Joint object detection and semantic segmentation has at-
tracted a lot of attention in the past few years, leading to
some interesting works. These works can be summarized into
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Fig. 1. RPN feature maps as class-agnostic segmentation maps. Feature
maps are shown for two different backbone networks: Resnet+C4 and
Resnet+FPN. In case of FPN, maps of each level (2-6) have been visualized.
The darker regions have lower activation values while the brighter have
higher activation values.

four categories: (i) a common encoder with parallel branches
for object detection and semantic segmentation attached to
the last layers of the encoder [20], [14], (ii) same as (i) but
with features from semantic segmentation branch refining
object detection [16], [21], (iii)) encoder-decoder network
where the concatenated feature map from each layer of the
decoder is used for semantic segmentation, whereas each
layer of the decoder focuses on multi-scale object detec-
tion [12] and (iv) encoder-decoder network where each layer
of the decoder is simultaneously used for object detection and
semantic segmentation [13]. Although the above methods
have shown to be effective by jointly training the two tasks,
we believe the performance of object detection and semantic
segmentation can be further improved. One possible reason
is that most of the above methods still mainly rely on simply
sharing convolutional features for the two tasks, without
focusing on any particular aspect of the pipeline responsible
for semantic segmentation and object detection.

In this paper, we focus our attention on a much deeper
connection between object detection and semantic segmen-
tation. We observe that the feature maps used by RPN re-
semble a dense class-agnostic (i.e., foreground/background)
segmentation map. We observe this across different backbone
networks, two of which have been shown in Figure 1. We
use this observation to improve the functioning of the RPN.
The goal of the RPN is to produce proposals which have
the potential of containing an object, which forms the first



part of a two stage object detector. These proposals are
filtered based on probability score maps generated by RPN,
as well as non-max suppression. They then are processed for
final classification and regression, which forms the second
part. Therefore, the RPN, and consequently the RPN input
feature map as well as the RPN probability map play a very
crucial role in object detection. If the first stage (i.e., RPN)
itself misses out on good proposals, the second stage cannot
recover them. Therefore, we propose a framework named
SegRPN where we endow Faster-RCNN with a semantic
segmentation branch using a shared Feature Pyramid Net-
work (FPN) backbone. The semantic segmentation branch
is composed of a multi-scale class agnostic segmentation
module, which has another RPN (i.e. RPN,.s) attached to
it. We improve the RPN in the detection branch (i.e. RPNge)
using RPN, in the segmentation branch in two ways:
(1) we fuse the input feature maps of the RPNy, score
classifiers and bounding box regressors at different scale
levels with the corresponding feature maps from RPNy, (ii)
we fuse the probability maps generated by RPNy, score
classifier at different scale levels with the corresponding ones
in RPNy. This improves the quality of proposals generated
by RPNge both in terms of precision and recall.

Since RPN,,sk is attached to a mutli-scale class-agnostic
segmentation module, it helps us learn scale specific fea-
tures for class-agnostic segmentation. This means the higher
resolution feature maps in the class-agnostic segmentation
module focus on segmenting the lower scale objects, whereas
the lower resolution feature maps focus on segmenting the
higher scale objects. We then use these scale specific features
to improve the semantic segmentation performance, which
becomes possible since the class-agnostic segmentation mod-
ule is attached to the class-specific module. The contributions
of this work are summarized as follows:

o We exploit the observation that the feature maps used
by RPN represent a dense class agnostic segmentation
map, and treat it as a much deeper connection between
object detection and semantic segmentation.

e We propose SegRPN, a framework for joint object
detection and semantic segmentation that effectively
exploits this observation.

o« We show why leveraging the scale of objects is an
integral part of SegRPN.

II. RELATED WORK

Before we introduce our approach, we review in this sec-
tion techniques for object detection, semantic segmentation
and past attempts at jointly dealing with the two tasks.

A. Object Detection

The goal of object detection is to classify all objects and
localize them via bounding boxes. The methods of object
detection can be broadly summarized into two categories:
one stage methods and two stage methods. Two stage
method, as popularized in the R-CNN framework [22] and
its variants [23], [1], is a proposal driven mechanism where
the first stage generates a sparse set of candidate object

locations and the second stage classifies each candidate
location as one of the foreground classes or as background
using a convolutional neural network. These methods have
dominated the field of object detection and are the most
representative frameworks among the two stage methods.
Over the years, there have been some notable extensions
to this framework, especially the ones based on multi-scale
features with strong semantics [4], [18].

One-stage methods, on the other hand, are applied over a
regular, dense sampling of object locations, scales and aspect
ratios. Overfeat [24] was one of the first modern one-stage
object detector based on deep networks. It was more recently
followed by SSD [2], [25], YOLO [5], [6] and RetinaNet [3].
These detectors have been tuned for speed and so are much
faster, but their accuracy still trails that of two-stage methods.
In this paper, we adapt a two-stage method for the object
detection pipeline since our focus is not on improving speed.

B. Semantic Segmentation

Semantic segmentation aims to predict the semantic label
of each pixel in an image. It has achieved significant progress
in the past few years [7], [8], [9], [10], [11]. The methods
of semantic segmentation can also be broadly categorised
into two categories: encoder-decoder methods and spatial
pyramid methods. The encoder-decoder methods contain
two subnetworks: an encoder subnetwork and a decoder
subnetwork. The encoder subnetwork is usually based on
the standard CNN models (e.g., VGG [26], ResNet [27],
DenseNet [28]) pre-trained on ImageNet [29]. It extracts
strong semantic features and reduces the spatial resolution
of feature maps. The decoder subnetwork on the other
hand, gradually upsamples these feature maps with reduced
spatial resolution. While some methods [30], [31] directly
upsample the feature maps using max-pooling indices of the
encoder subnetwork, others [32], [33], [11] extract context
information by adopting skip-layer connection between the
feature maps from the encoder and decoder subnetworks.

Spatial pyramid methods rely on exploiting multi-scale
information, which is extracted from the last output feature
maps using the idea adopted from spatial pyramid pool-
ing [34]. Specifically, this multi-scale information can also
be utilised in different ways. PSPnet [9] propose pyramid
pooling module, which downsamples and upsamples the
feature maps in parallel. Some other prominent works [8],
[35], [36], [37] propose to use multiple convolutional layers
of different atrous rates in parallel (called ASPP) to extract
multi-scale features. For our work, we opt a simple design
for our semantic segmentation branch, appending a set of
conolvutional layers on top of the FPN backbone in a multi-
scale fashion.

C. Joint Object Detection and Semantic Segmentation

The task of jointly dealing with object detection and
semantic segmentation has attracted a lot of attention in the
past few years, where the goal is to simultaneously detect
objects and predict pixel semantic labels by a single network.
Recently, researchers have done some attempts. A graphical
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Fig. 2. Proposed Network Architecture. We use a Resnet+FPN backbone, which is shared by the object detection (top) and semantic segmentation (bottom)
branches. We use the feature maps and probability maps from RPNy, to modify the corresponding maps from RPNy, using element wise operations.

model to holistic scene understanding is proposed in [38].
[14] propose a joint object detection and semantic segmen-
tation framework by sharing the encoder subnetwork. A real-
time approach to jointly solve this task was also introduced
in [12]. More recently, [13] propose an encoder-decoder
network where each layer of the decoder is simultaneously
used for object detection and semantic segmentation.

Almost all of the above works rely on sharing convolu-
tional features in some or the other way, without giving a
concrete explanation as to why these features are connected.
Although a lot of progress has been made in this field,
we argue that there is still room for further improvement.
To support this claim, in this paper, we explore a novel
connection between the two tasks of object detection and se-
mantic segmentation. We subsequently provide a framework
for exploiting this said connection and show some positive
experimental results.

III. SEGRPN

Different from the existing works dealing with joint object
detection and semantic segmentation, we explore a new con-
nection between the two tasks and build our model to exploit
it. We observe that the feature maps used by RPN resemble
a dense class-agnostic (i.e., foreground/background) segmen-
tation map. The architecture of the proposed framework is
shown in Figure 2. We endow the Faster-RCNN framework
with a semantic and class-agnostic segmentation branch
using a shared Feature Pyramid Network (FPN) backbone.
We first discuss this observation in detail in Section III-A,
and then move on to explaining the different components of

the model.

A. RPN Feature Map as Class-Agnostic Segmentation Map

The RPN is the first stage of Faster R-CNN, and it’s job is
to generate regions of interest (i.e., ROIs) which potentially
contain the object. When used on top of FPN, each level
of the pyramid generates ROIs corresponding to a fixed
anchor size. The lower the level of the FPN, the higher
the resolution and the smaller the objects it focuses on. The
RPN generates these ROIs using its own binary classifier (i.e.
foreground vs background) and box regressor, which take
as input a set of feature maps. Using these features maps,
the RPN generates bounding box offsets and probability
maps representing pixels whose anchors have a possibility
of containing the objects. We visualize both the input RPN
feature maps as well as the generated ROI probability map
for an image from the Cityscapes dataset in Figure 3.

For our work, we stick with the standard RPN setting of
5 scales and 3 aspect ratios of {32, 64, 128, 256, 512}
and {.5, 1, 2} respectively. This means that there are 5
pyramid levels (2-6), each generating a single RPN feature
map and three ROI probability maps corresponding to each
of the three aspect ratios. The RPN feature map along with
its corresponding ROI probability maps are shown for each
of the five pyramid levels in Figure 3 (a). There are two
interesting observations here; First, the RPN feature maps
have a lower activation region around the foreground objects
in the image at all levels, where each level focuses on a
certain scale of object. This is especially visible in the feature
map of level 3, where the human and car contours are clearly
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In (a), visualization of the RPN feature maps and ROI probability maps for an image in the Cityscapes dataset is shown. Filtering of proposals

points denote pixels with proposals having an overlap of greater than 0.5 with

the ground truth bounding box before filtering. Red and green points are pixels denoting false positives (FPs) and true positives (TPs) respectively, after

filtering.

visible. Second, the generated ROI probability map behaves
in a complete opposite manner to the RPN feature map,
having higher activation for the same region with lower
activation in the RPN feature map. This suggests that the
RPN classifier acts as a low-pass filter, trying to invert the
activations of the RPN feature map. We also analyze the
reason behind these two interesting observations in detail.

Each pixel in the RPN feature map generates 3 proposals
corresponding to the three aspect ratios. The RPN filters
these proposals using the ROI probability score and non-
maximal suppression (NMS), to form a batch of positive
and negative proposals with a ratio of 1:3. We show that
this filtering done by the RPN based on the ROI probability
score misses out on a lot of candidate regions, and we argue
that this happens because these candidate regions were not
segmented in the RPN feature map. In Figure 3 (b), we
show the effect of the filtering done by the RPN as well
as the importance of the ROI probability map. The pixels
responsible for generating the proposals having an overlap
of greater than 0.5 with the ground truth bounding box before

filtering are shown in yellow at the bottom. After filtering,
we show the true positives (TPs) and false positives (FPs)
in green and red color respectively. These TPs and FPs are
directly related to regions in the ROI probability map, as
shown in Figure 3 (b). A lot of yellow pixels covering the
object before filtering are missed once the filtering is done,
which results in very few TPs and a lot of FNs and FPs at
every level of the FPN. Note that we stick with the standard
setting of using 2000 proposals after filtering by the RPN,
and we show the exact number of proposals belonging to
TPs, FPs and FNs for the three levels (2-4) individually
in Figure 3 (b). We argue that this happens because these
yellow pixels do not have a higher activation value in the
corresponding ROI probability map, which in turn is caused
by these regions not being segmented in the RPN feature
map.

B. Class-Agnostic Segmentation Branch

As mentioned in Section III-A, the RPN feature maps rely
on its segmentation characteristic for subsequent filtering
of the generated proposals. However, these maps are not
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Fig. 4. Convergence of loss curves of both box regressor and class classifier
corresponding to RPNy (top) and RPN,k (bottom).

entirely accurate. Additionally, semantic segmentation is
class-aware, trying to discriminate between all the semantic
classes at once. However, it does not specifically focus on
the distinction between objects and the background.

So inspired by [13], we append a class agnostic module
in parallel to our segmentation branch, which produces a
binary (i.e., foreground/background) segmentation map. The
estimated probability for the binary cross entropy (BCE) loss
function of this branch for background class is denoted by
p € [0, 1]. This branch serves two purposes: (i) it provides
a scale specific objectness prior for semantic segmentation
and (ii) it supports RPN,sk Which improves the functioning
of RPNy, in the detection branch.

C. RPN in Class-Agnostic Segmentation Branch

Since the RPN feature maps resemble a class-agnostic
segmentation map, a natural question to ask is: can we train
RPN on top of the segmentation feature maps? We explore
this question by adding a RPN called RPN,,5x on top of the
feature maps in the class-agnostic segmentation branch. We
show the training loss converging for both box regressor and
binary classifier corresponding to RPNy and RPN, in
Figure 4. This suggests that we’re able to train the RPN,
as well as RPN, further solidifying our claim that the RPN
feature maps resemble a class-agnostic segmentation map.

The motivation behind adding another RPN in the class-
agnostic segmentation branch and exploiting the segmen-
tation modality to improve object detection is shown in
Figure 5. We show an example of a challenging image
from the Cityscapes validation set in Figure 5(a) and its
corresponding predictions from our network in Figure 5(b)
when RPN« is not attached. As can be gleaned from
the object detection ground truth, the image contains a lot
of objects, many of them being small in size. The small
objects will naturally be tough to predict, but the network
is still able to predict some of the small objects. However,
it misses out on some objects which are reasonably large
in size. As shown in Figure 3 and discussed in Section III-
A, the RPN feature maps indirectly control the proposals
which are picked after filtering by the RPN, and these
filtered proposals eventually get picked as predictions. We

argue here that the reason why objects are being missed in
Figure 5(b) is because the RPN feature maps do not contain
segmented regions corresponding to these objects. On the
other hand, we show that the class-agnostic segmentation
output, which also resembles an RPN feature maps, does a
better job at segmenting these missed objects. Interestingly,
the semantic segmentation output also recovers these missed
objects, further facilitating the evidence that the segmentation
modality can help the task of object detection.

Since we’re able to successfully train the RPNy,,s, we use
the RPN 55k feature maps to modify the RPNy, feature maps.
This modification is based on the intuition that the RPN ..
feature maps learn some relevant information missed out
by the RPNy, feature maps, due to RPNy, exploiting
the segmentation modality. This modification is basically
an element-wise multiplication followed by an element-wise
sum of the RPN feature maps corresponding to each FPN
level, as shown in Figure 2. We also modify the ROI
probability maps based on the same intuition, by element-
wise addition of the ROI probability maps generated by
RPNk and RPN for each of the three aspect ratios, right
before the sigmoid layer.

IV. EXPERIMENTS
A. Datasets and Metric

Cityscapes. The Cityscapes dataset [39] is a collection
of images with city street scenarios. It includes instance
segmentation annotation which we transform into bounding
boxes for our experiments. It contains 2,975 training images
and 500 validation images.

Metric. For object detection, mean average precision (i.e.,
mAP) is used for performance evaluation. The mAP is
calculated under the IoU threshold of 0.5. For semantic
segmentation, mean intersection over union (i.e., mloU) is
used for performance evaluation.

B. Implementation Details

We use a standard FPN configuration with 256 output
channels per scale. For the (pre-FPN) backbone, we use
ResNet [27] models pre-trained on ImageNet [29] using
batch norm (BN) [40]. All feature layers are jointly updated
during training using Stochastic Gradient Descent (SGD).
When used in fine-tuning, we replace BN with a fixed
channel-wise affine transformation, as is typical [27]. The
input images are rescaled to the size of 512 x 1024, and
the size of mini-batch is 1. The total number of iteration in
the training stage is 96k. We warm-start the learning rate
from 0.0003 to 0.001 in 500 steps using linear annealing
for stabilizing training, and then drop the learning rate by
a factor of 10 at 60k and 80k iterations. We use a single
Nvidia Titan XP, and implement the proposed method with
Pytorch [41].

C. Results on Cityscapes

We show the results of our proposed framework in Table I.
We first show the baseline results without our class-agnostic
module. We note that the mIoU results are not comparable to
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Fig. 5. Motivation behind RPNp,sk. A challenging image from the Cityscapes validation set is shown in (a). In (b), we visualize the outputs from different
parts of our proposed network when RPN, is not attached. Blue and red boxes represent ground truth and predicted bounding boxes. Green boxes
represent large objects which are missed by the object detection branch but recovered by the semantic and class-agnostic segmentation branches.

the current state of the art [42], [43], primarily because of the
training settings (batch size, no. of GPUs used, input image
resolution, batch normalization etc). But since our focus is to
explore the connection between object detection and seman-
tic segmentation, we keep our training settings simple and
don’t compare with these methods. Also, since Cityscapes is
not primarily used for object detection, we cannot compare
the object detection results with other methods.

By modifying the ROI probability maps, we’re able to
improve the mAP by 1.5%. We also see an increase in the
mloU by .5%. The increase in the semantic segmentation
performance can be attributed to the class-agnostic branch,
which gives an objectness prior for semantic segmentation.
Note that the mIoU* performance is extremely high since it’s
a binary classification task (i.e., foreground vs background).
We also see an increase in the proposal average recall
rate, suggesting that more objects are being covered by the
RPN generated proposals. We also show the results without
modifying ROI probability maps during inference to show
the effect of the modification. Similar to the ROI probability
map modification, the RPN feature map modification also
improves the mAP by 1.1%. It’s accompanied by a similar
improvement in the mloU and equally good mloU* perfor-

mance, along with an increase in the proposal average recall
rate.

D. Additional Experiments and Analysis

We also conduct ablation studies to further explore the
proposed hypothesis of treating RPN feature maps as a dense
class-agnostic segmentation map. Since our framework is
built on top of FPN, the scale of objects is an important
aspect of the overall approach. In the original FPN paper [4],
the authors adapt a heuristic to assign an ROI of width w
and height h to a certain level P of the pyramid, which is
given by:

k = | ko + logy(Vwh/224)| (1)

Here 224 is the canonical ImageNet pre-training size and
ko = 4, as mentioned in [4]. This heuristic essentially
suggests that each level of the FPN is designed to handle
a certain scale of objects. Specifically,

Vwh > 448

448 > J/wh > 224
224 > v/wh > 112
otherwise

(@)

N W = Ut



TABLE I
RESULTS OF OBJECT DETECTION (MAP) AND SEMANTIC SEGMENTATION (MIOU) ON CITYSCAPES. WE ALSO SHOW CLASS-AGNOSTIC
SEGMENTATION RESULTS (MIOU*) AS WELL AS PROPOSAL AVERAGE RECALL RATE (PROP. AR) AT 1000 PROPOSALS PER IMAGE.

Model mloU mloU* mAP  Prop. AR
Baseline 67.34 NA 5038  79.58
Baseline + ROI 67.80 94.41 51.87 80.22
Baseline + ROI (w/o ROI during inference) 67.80 94.41 51.65 79.77
Baseline + RPN 6795 94.40 5145 80.40
Baseline + RPN (w/o RPN during inference) 67.95  94.40 50.85 79.40

In this work, since we rely on the class-agnostic segmen-
tation modality to improve object detection, we must divide
the segmentation information based on scale in order for it
to be applied to the FPN. We specifically use the ground
truth class-agnostic segmentation map for this ablation study
in order to verify the idea. Also, note that the canonical pre-
training size (i.e., 224) is not really applicable for different
input image sizes. So, we experiment with the above heuristic
in three ways which we refer to as: i) Case 1 ii) Case 2,
and iii) Case 3. The core idea behind these heuristics is
to find a scale appropriate matching between the ground
truth segmentation map and ROI assignment. The Cityscapes
dataset has instance segmentation ground truth, which we use
to find the scale of individual objects. We visualize these
hueristics in Figure 7 and describe them in detail below.
Case 1. For this case, we use the same heuristic for ROI
assignment as used in [4]. For dividing the ground truth
segmentation map, we follow a different strategy. Each level
of the FPN is designed to handle a certain scale of object,
which is specified by the fixed anchor size used in the RPN.
So we use these anchor sizes as a heuristic for dividing the
segmentation map based on object/instance sizes. Specifi-
cally, let the FPN level to which the segmentation map will
be divided and assigned to be represented by L. Then,

6 a>256
5 256> \/a>128
L={4 128> /a>64 3)

3 64>+/a>32
2 otherwise

where a is the area of the bounding box of an object. Note
that a is calculated keeping in mind the spatial stride of the

Baseline
Baseline + ROI1

Baseline + ROI2
Baseline + ROI3 Baseline

Baseline + RPN1
Baseline + RPN2
Baseline + RPN3

Fig. 6. Plot of Foreground ROIs per 2000 after filtering by NMS for all
three heuristic cases over no. of iterations

network. The above heuristic essentially maps an object in
the ground truth segmentation map to a level in the FPN. We
visualize this heuristic in Figure 7a.

Case 2. In the previous case, there was a difference in the
heuristic used for ROI assignment [4] and the one we used
for dividing the ground truth segmentation map. In order for
them to be in sync, we keep the original heuristic for ROI
assignment, but change our heuristic used for dividing the
segmentation map. Specifically,

6,5 /a> 448
4 448 > \Ja > 224

3 224 > \/a > 112
2 otherwise

“4)

We visualize this heuristic in Figure 7b.

Case 3. As mentioned earlier, the canonical pre-training size
(i.e., 224) used in [4] is not really applicable for different
input image size. This is because the canonical pre-training
size affects the ROI assignment to the FPN levels, and the
ROI sizes will be different for different input image size.
Since we use an input size of 51221024, we empirically
change the canonical pre-training size to 128 so that each
level of the FPN gets some objects to handle. This can be
visually seen in Figure 7c. Specifically,

6 +a>384
5 384> ./a>192
L=<4 192> /a> 96 &)
3 96> +/a>48
2 otherwise

Results. We show the results of the additional experiments
in Table II. We also show effect of the modifications on the
foreground ROIs generated by RPN after filtering by NMS in
Figure 6. For Case 1, we observe that by modifying the ROI
probability maps, we’re able to improve the mAP by 1.1%.
We also see an improvement in the semantic segmentation
performance by .5%, which can be attributed to the im-
provement in the common FPN backbone features shared by
the object detection and semantic segmentation branch. The
improvement is also reflected in the proposal average recall
rate, which suggests more objects being covered by the RPN
after modification. We see a similar trend when modifying



TABLE I
RESULTS OF ADDITIONAL EXPERIMENTS ON CITYSCAPES. WE REFER TO THE THREE CASES BY THEIR CORRESPONDING SUBSCRIPT. WE SHOW

OBJECT DETECTION (MAP) AND SEMANTIC SEGMENTATION (MIOU) RESULTS AS WELL AS PROPOSAL AVERAGE RECALL RATE (PROP. AR) AT 1000

PROPOSALS PER IMAGE.

Model mloU mAP  Prop. AR
Baseline 67.34  50.38 79.58
Baseline + ROI; 67.89 5142 80.56
Baseline + ROI; (w/o ROI; during inference) 67.89  51.25 79.95
Baseline + RPN; 68.52  51.57 82.59
Baseline + RPN (w/o RPN; during inference ) 6795 50.84 78.86
Baseline + ROI; + RPN, 68.18 5140 83.34
Baseline + ROI; + RPN; (w/o ROI; and RPN; during inference) 68.18 4993  79.02
Baseline + ROI; + RPN, (w/o ROI; during inference) 68.18 51.20 82.72
Baseline + ROI; + RPN; (w/o RPN, during inference) 68.18 50.30 79.90
Baseline + ROI, 68.33 51.50 80.70
Baseline + ROI, (w/o ROI, during inference) 68.33 51.28 79.84
Baseline + RPN, 68.23 51.71 82.54
Baseline + RPN, (w/o RPN, during inference ) 68.23 50.17 79.84
Baseline + ROI; 68.24 51.21  80.55
Baseline + ROI3 (w/o ROI; during inference) 68.24 51.13  80.29
Baseline + RPNj3 6843 51.56 82.84
Baseline + RPN3 (w/o RPN3 during inference ) 6843 5043 79.64

the RPN feature maps, with an improvement of 1.2% for both
mloU and mAP. We also see an improvement in the proposal
average recall rate by 3%. This improvement in the proposal
average recall rate is also reflected in Figure 6 (right),
where the FG ROIs generated are higher after modification
when compared with the baseline. This however, is not
very clearly reflected for the case of ROI modifications. In
addition, we also provide results without incorporating the
modifications at inference time, to further isolate the effect
of the modification.

For Case 2 and Case 3, we observe a similar trend as in
the previous case. By modifying the ROI probability maps,
we’re able to improve the mAP and and also the mIoU, which
can again be attributed to the improvement in the common
FPN backbone features shared by the object detection and
semantic segmentation branch. The improvement is also
reflected in the proposal average recall rate, which suggests
more objects being covered by the RPN after modification.
Figure 6 also shows the increasing trend in the FG ROIs for
subsequent cases, which is also reflected in the higher values
of proposal average recall rate. We see a similar trend when
modifying the RPN feature maps, with an improvement for
both mloU and mAP.

V. CONCLUSION

In this paper, we propose an end-to-end learning frame-
work called SegRPN for joint object detection and seman-
tic segmentation. Our framework is based on the novel
observation that the RPN feature maps in Faster-RCNN

resemble a dense class-agnostic segmentation map. We treat
this observation as a deeper connection between the tasks
of object detection and semantic segmentation, and build
a framework to exploit this observation. Experimental re-
sults on Cityscapes show the effectiveness of the proposed
method. We also provide additional experiments and analysis
to further explore this observation.
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