
Pattern Recognition Letters 112 (2018) 184–190

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Improving multiclass classification by deep networks using DAGSVM

and Triplet Loss

�

Nakul Agarwal a , ∗, Vineeth N Balasubramanian

b , C.V. Jawahar a

a Centre for Visual Information Technology, IIIT Hyderabad, Gachibowli, Hyderabad, Telangana 50 0 032, India
b Department of Computer Science and Engineering, Indian Institute of Technology, Kandi, Sangareddy, Hyderabad, Telangana 502285, India

a r t i c l e i n f o

Article history:

Received 31 August 2017

Available online 7 July 2018

Keywords:

Multiclass classification

Deep networks

DAGSVM

Triplet loss

a b s t r a c t

With recent advances in the field of computer vision and especially deep learning, many fully connected

and convolutional neural networks have been trained to achieve state-of-the-art performance on a wide

variety of tasks such as speech recognition, image classification and natural language processing. For clas-

sification tasks however, most of these deep learning models employ the softmax activation function for

prediction and minimize cross-entropy loss. In contrast, we demonstrate a consistent advantage by re-

placing the softmax layer by a set of binary SVM classifiers organized in a tree or DAG (Directed Acyclic

Graph) structure. The idea is to not treat the multiclass classification problem as a whole but to break it

down into smaller binary problems where each classifier acts as an expert by focusing on differentiating

between only two classes and thus improves the overall accuracy. Furthermore, by arranging the classi-

fiers in a DAG structure, we later also show how it is possible to further improve the performance of the

binary classifiers by learning more discriminative features through the same deep network. We validated

the proposed methodology on two benchmark datasets, and the results corroborated our claim.

© 2018 Elsevier B.V. All rights reserved.

k

c

i

f

s

s

a

t

f

w

i

m

o

r

d
1. Introduction

Multiclass classification problems are fundamental in computer

vision. Many vision tasks, e.g. object recognition, person recog-

nition and scene classification, require the classifier to discrim-

inate between multiple categories. Over the years, deep learn-

ing methods have claimed state-of-the-art performances in such

tasks [14,16,23] . All of these deep architectures use the softmax

activation function (also known as multinomial logistic regression)

for classification. Although effective, these deep networks lack the

scope for improvement without a major change in architecture for

increase in classification accuracy.

In this paper, our goal is to design a multiclass classification

method that improves upon the accuracy of the existing deep

learning models without bringing about a change in the architec-

ture of the earlier layers (focusing only on the output layer). The
� The authors whose names are listed immediately below certify that they have

NO affiliations with or involvement in any organization or entity with any financial

interest (such as honoraria; educational grants; participation in speakers’ bureaus;

membership, employment, consultancies, stock ownership, or other equity interest;

and expert testimony or patent-licensing arrangements), or non-financial interest

(such as personal or professional relationships, affiliations, knowledge or beliefs) in

the subject matter or materials discussed in this manuscript.
∗ Corresponding author.

E-mail address: nagarwal2@ucmerced.edu (N. Agarwal).

t

t

2

m

k

h

https://doi.org/10.1016/j.patrec.2018.06.034

0167-8655/© 2018 Elsevier B.V. All rights reserved.
ey contribution of our work is that we break down the N -class

lassification problem into N(N − 1) / 2 binary problems by replac-

ng the softmax layer of a deep architecture by binary classifiers

or each pair of classes arranged in a DAG (Directed Acyclic Graph)

tructure. Such a breakdown enables the network to focus on

olving individual binary problems which are easier to solve. It

lso enables the network to further improve the performance of

he binary classifiers by learning more pairwise discriminative

eatures, which is especially effective since each classifier deals

ith only two classes. Another advantage of our method is that

t can be easily applied to different deep architectures, since the

ethod focuses only on the output layer. Fig. 1 illustrates the

verall idea of the proposed approach.

The rest of the paper is organized as follows: in Section 2 , we

eview related work. This is followed in Section 3 by the detailed

escription of our methodology. Section 4 presents the experimen-

al results on two benchmark datasets. We finally conclude with

he summary of our approach and future extensions in Section 5 .

. Related work

The family of multiclass classification algorithms that reduces

ulticlass problems to binary can broadly be categorized into two

inds, depending on whether the methods take advantage of the

ierarchical structure in the label space. The first category of meth-

https://doi.org/10.1016/j.patrec.2018.06.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.06.034&domain=pdf
mailto:nagarwal2@ucmerced.edu
https://doi.org/10.1016/j.patrec.2018.06.034

N. Agarwal et al. / Pattern Recognition Letters 112 (2018) 184–190 185

Fig. 1. Two variants of multiclass classification using binary classifiers arranged in a DAG structure. (a) shows the architecture of the model for a 4-class problem where

features learned by the deep network are used to train all the classifiers. Here each node is a binary classifier for a pair of classes. In (b), the architecture for the same

4-class is shown but here each node represents a combination of the deep architecture (D.A.) and the Support Vector Machine (SVM) classifier. This makes it possible to

learn more pairwise discriminative features to further improve the performance of the classifiers.

o

v

c

r

i

i

o

b

m

r

t

fi

p

t

c

t

v

j

c

i

f

p

r

a

l

b

s

f

t

b

f

t

a

p

3

3

t

a

n

n

i

i

t

d

p

t

h

s

t

t

t

c

a

n

a

a

t

p

n

d

l

t

n

c

h

t

A

u

l

fi

w

t

3

c

a

l

p

b

m

d

n

D

p

f
ds is generic and treats the label space as flat. It includes one-

s-all, one-vs-one with maximum wins (all pairs of classes are

ompared and the class with the most votes wins), error cor-

ecting output codes [1,6] , output-coding based multiclass boost-

ng [15,21] , and DAGSVM [20] (one-vs-one classifiers are organized

n a DAG to discard classes sequentially). The second class of meth-

ds exploits the hierarchical structure [2,9,26] . The main intuition

ehind these methods is to reduce the test time by finding some

easure of separability to partition the classes into two subsets

ather than pairwise.

In this work, we focus on adapting a DAG-based approach for

wo reasons: (i) it allows us to use a combination of binary classi-

ers where it is possible to effectively learn more discriminative

airwise features; and (ii) it has a lower time complexity than

he corresponding one-vs-one method. Using convolutional nets in

ombination with SVMs (especially linear) have been proposed in

he past as part of a multistage process. In particular, a deep con-

olutional net is first trained using supervised/unsupervised ob-

ectives to learn good invariant hidden latent representations. The

orresponding representations of data samples are then treated as

nput and fed into linear (or kernel) SVMs [3,12,18] . Few other ef-

orts in the past have also proposed similar models where the out-

ut layer of standard neural nets as well as convolutional neu-

al nets is replaced by SVMs but with joint training of weights

t lower layers [4,17,30] . Vinyals et al. [25] proposed a method to

earn a recursive representation using linear SVMs at every layer,

ut without joint fine-tuning of the hidden representation. We-

ton et al. [28] proposed a semi-supervised embedding algorithm

or deep learning where the hinge loss is combined with the con-

rastive loss from Siamese networks [10] . Softmx layer is replaced

y linear SVMs in [24] where the whole network used the loss

rom the L2-SVM instead of the standard hinge loss for optimiza-

ion. All of the above effort s however, treat multiclass classification

s one single problem whilst we break it down into smaller binary

roblems and exploit the advantage of pairwise classifiers.

We now present the proposed methodology.

. Methodology

.1. Overview

Our goal is to design a model that is able to improve upon

he accuracy of existing deep networks for classification tasks. To

chieve this, we remove the softmax layer after training the deep

etwork and extract features from the last layer to train a set of bi-

ary classifiers organized in a tree or DAG structure. Each classifier

s trained to differentiate between only two classes, which is what
s best done by popular classification methods such as support vec-

or machines (SVMs) and logistic regression. By doing so, we break

own the problem of multiclass classification into smaller binary

roblems where each classifier acts as an expert when it comes

o choosing a decision path based on two classes, which in turn

elps in improving the overall accuracy. As an example, Fig. 1 (a)

hows the DAG structure for a 4-class problem. The deep archi-

ecture is trained to perform classification using softmax, which in

urn makes it learn good features for classification. We then take

hose features and train each of the 6 classifiers individually. The

lassifiers are based on SVMs and use linear kernel. At test time,

n instance traverses the hierarchy from top to bottom until a leaf

ode where the final decision is made.

We also propose a variant of the same methodology where

dding a set of binary classifiers arranged in a DAG like structure

t the end of the deep architecture makes it possible to tweak

he classifiers individually. For instance, to further improve the

erformance of the individual classifiers, we use the same origi-

al deep architecture to learn more discriminative features. This is

one by fine-tuning the pre-trained deep network using the triplet

oss [22] instead of the cross-entropy loss. Its corresponding struc-

ure can be seen for the same 4-class problem in Fig. 1 (b). Each

ode in the DAG is now a combination of the fine-tuned deep ar-

hitecture and a SVM classifier. The deep network inside each node

as been specifically fine-tuned to find more discriminative fea-

ures corresponding to the two classes of its classifier counterpart.

t training time, we want the test accuracy of the classifiers to go

p when compared to the case in Fig. 1 (a). So, we use the newly

earned discriminative features to train the individual SVM classi-

ers. At test time, an instance first passes through the deep net-

ork to get transformed into a new feature space and then passes

hrough the classifier.

.2. DAG

The DAG is a arrangement of nodes organized in a hierarchi-

al structure where each node represents a binary SVM classifier,

 configuration popularly known as DAGSVM. For a N -class prob-

em, we have N(N − 1) / 2 binary SVM classifiers in the DAG. Sup-

ort Vector Machines were originally proposed and work best for

inary classification, and we make use of that fact. The perfor-

ance of the DAGSVM can depend on the sequence order of the

ecision list, which is controlled by the arrangement of the bi-

ary classifiers in the DAG. For our experiments, we consider a

AG which has a fixed structure. There are several efforts in the

ast [7,19] that have focused on learning the hierarchy of the DAG

or multiclass classification for computational efficiency, where the

186 N. Agarwal et al. / Pattern Recognition Letters 112 (2018) 184–190

Fig. 2. Arrangement of the different binary classifiers in the DAG for a N -class prob-

lem.

Table 1

Performance of the different models on CIFAR-10

dataset. Base model ∗ indicates model after being

fine-tuned with triplet loss.

Base model Method Accuracy (%)

A A + Softmax 89.07

A + DAGSVM 90.76

A ∗ + DAGSVM 92.50

B B + Softmax 87.97

B + DAGSVM 90.17

B ∗ + DAGSVM 90.95

C C + Softmax 90.98

C + DAGSVM 92.52

C ∗ + DAGSVM 93.69

w

t

t

m

p

a

t

t

4

b

u

p

m

f

l

p

t

i

m

u

4

t

3

m

w

r

l

l

w

t

u

fi

r

m

a

5

m

F

o

t

t

i

o

d

d
nodes still represent a binary classifier but actually consider two

subsets of classes. We maintain a fixed hierarchy in this work to

show a proof-of-concept of our idea; besides, a separate classifier

for a pair of classes makes learning of discriminative features more

effective, as will be explained in Section 3.3 .

Now we will define the structure of the DAG used in this paper.

Let the problem be a N -class classification problem. The root node

then is a classifier between classes i and j where i represents 1 and

j represents N . Its left child node represents a classifier between

classes i and j − 1 and right child node between classes i + 1 and

j . The rest of the DAG is designed in a similar way, as can be seen

in Fig. 2 . We adhere to this configuration for purposes of simplicity

and convenience, without any loss of generality. We do note that

the performance of the proposed methodology can be improved if

an optimal configuration can be identified for a given application.

3.3. Learning more discriminative features

In the second variant of the proposed methodology (Fig. 1 (b)),

we make use of the triplet loss [22] to improve the discriminabil-

ity of the pairwise features. The triplet loss tries to enforce a mar-

gin between each pair of instances belonging to one class to in-

stances from all the other classes. Since our model considers only

two classes at a time, this makes the triplet loss even more effec-

tive in enforcing this discriminability. In particular, we strive for an

embedding f (x), from an image x into a feature space in R

d , such

that the squared distance between instances of the same class is

small, whereas the squared distance between a pair of instances

from different classes is large. f (x) in our case is the learned de-

scriptor embedding. The triplet loss is motivated in [27] in the con-

text of nearest-neighbor classification. Basically we want to ensure

that an image x a
i

(anchor) belonging to a particular class is closer

to all other images x
p
i

(positive) of the same class than it is to any

image x n
i

(negative) of the other class. The loss L being minimized

can then be given as:

L =

∑

(a,p,n) ∈ T
max { 0 , || f (x a

i
) − f (x p

i
) || 2 2 +

margin − || f (x a
i
) − f (x n

i
) || 2 2 } (1)

where T is a collection of training triplets and margin ≥ 0 is a scalar

quantity which is empirically chosen.

Triplets in [22] were chosen based on a strategy where all pos-

sible anchor positive pairs were picked in a mini-batch while still

selecting the semi-hard negatives. Since we’re dealing with only

two classes at a time, picking all possible anchor positive pairs in a

mini batch is equivalent to randomly selecting any anchor positive

pairs. Semi-hard negatives were picked in [22] for faster conver-

gence. As we generate triplets online, we empirically find that in

our case, we lose more time in mining semi-hard negatives than
e gain by faster convergence, without any significant change in

he final result. So, we choose to adopt a strategy where the nega-

ives are picked at random but we make sure that the anchors in a

ini-batch have equal contribution from both the classes. An im-

ortant point to mention here is that although the deep networks

re not directly being fine-tuned using a triplet loss to give features

hat improve overall classification accuracy (for all classes), we find

he newly learned features to perform well regardless.

. Experimental results

In this section, we present our experimental results on two

enchmark datasets to validate the proposed idea. The popularly

sed CIFAR-10 [13] and STL-10 [3] datasets are used for this pur-

ose. We use different deep learning architectures as our base

odels to show that our methodology can be applied under dif-

erent scenarios. Our implementation is based on Torch [5] and

inked to the NVIDIA CuDNN libraries to accelerate training. We

erform experiments using a single Nvidia Titan Xp GPU and In-

el(R) Core(TM) i7-7700K CPU @ 4.20 GHz. For preprocessing, the

mages in the datasets are converted from RGB to YUV and are

ean-std normalized. We also do data cropping and augmentation

sing horizontal flipping in our experiments.

.1. CIFAR-10

CIFAR-10 is a dataset with 10 object classes, 50,0 0 0 images for

raining and 10,0 0 0 for testing. Each image is an RGB image of size

2 × 32. We make use of three different architectures as our base

odels. The first one is similar to the VGG-D network [23] but

ith 2 fully connected layers in the end having 512 and 10 neu-

ons respectively and batch normalization after every convolutional

ayer. We refer to this network as ‘A’. The second network is simi-

ar to the NIN model [16] but with a linear layer at the end along

ith batch normalization after every convolutional layer. We refer

o this network as ‘B’. The third is similar to the Resnet-20 model

sed for training on CIFAR-10 dataset in [11] , but with number of

lters as {64, 128, 256} for the feature maps of sizes {32, 16, 8}

espectively. We refer to this network as ‘C’. We train these base

odels over softmax layer using SGD with a batch size of 128 and

 learning rate of 0.1 which decays by a factor of 2 after every

0 epochs for 200 epochs. We use a weight decay of 0.0 0 01 and

omentum of 0.9. The respective training curves can be seen in

ig. 3 a–c where eventually A achieves a test accuracy of 89.07%, B

f 87.97% and C of 90.98%. We then remove the softmax layer and

ake the learned features from the last layer of these deep archi-

ectures to train the DAGSVM, which improves the accuracy signif-

cantly (as shown in Table 1). To further improve the performance

f the individual binary classifiers in the DAG, we fine-tune these

eep architectures specific to each classifier to learn more pairwise

iscriminative features using a triplet loss with a margin value of

N. Agarwal et al. / Pattern Recognition Letters 112 (2018) 184–190 187

Fig. 3. Training curves corresponding to three different models with softmax on CIFAR-10 dataset. Curve for model A is represented in (a). (b) shows the plot for model B

and (c) represents the plot for model C. Train and test accuracies are represented by blue and red curves respectively. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

0

w

v

T

r

f

F

g

a

f

i

a

A

a

n

B

i

4

i

t

i

o

l

n

o

w

t

s

b

c

Table 2

Performance of the different models on STL-10

dataset. Base model ∗ indicates model after being

fine-tuned with triplet loss.

Base model Method Accuracy (%)

S1 S1 + Softmax 60.05

S1 + DAGSVM 63.33

S1 ∗ + DAGSVM 63.78

S2 S2 + Softmax 60.78

S2 + DAGSVM 63.83

S2 ∗ + DAGSVM 64.58

L1 L1 + Softmax 66.54

L1 + DAGSVM 69.16

L1 ∗ + DAGSVM 70.28

t

a

e

w

p

S

p

r

S

6

m

s

m

t

w

t

u
.5. We use SGD for fine-tuning the network over 4 k iterations

ith a batch size of 100 triplets and weight decay and momentum

alues of 0.0 0 05 and 0.9 respectively. The results can be seen in

able 1 . With the improved features, which is our best model, the

eduction in overall error is even better.

The test accuracies of the individual binary classifiers before the

eatures are improved using a triplet loss can be seen in Fig. 4 a,b,c.

or A and C, apart from 1 classifier, rest all have a test accuracy

reater than 96%. And for B, more than 75% of the classifiers have

n accuracy greater than 96%. This makes it extremely difficult to

urther improve their performance. But even then, out of the 10 C 2
.e. 45 classifiers, we are able to improve the accuracies of 40, 32

nd 43 classifiers using triplet loss with A, B and C respectively.

s can be gleaned from the histograms in Fig. 4 a–c the percent-

ge improvement in test accuracies of the individual classifiers is

ot huge, which is understandable given the high reference scale.

ut even then the impact on overall classification error reduction

s considerable.

.2. STL-10

STL-10 is also a 10-class image recognition dataset with 50 0 0

mages for training and 80 0 0 images for testing. Each image in

he dataset is an RGB image of size 96 × 96. But for the exper-

ments, we resize them to 32 × 32 so that the scale of depicted

bjects matches that of CIFAR-10. Overfitting is a significant chal-

enge for this dataset, so we start by showing results on 2 ‘small’

etworks and then later move on to a ‘large’ network to show that

ur methodology can be applied to different architectures. All net-

orks are trained from scratch. In the following we will refer to

he small networks as ‘S1’, ‘S2’ and large network as ‘L1’. S1 con-

ists of two convolutional layers with 64 and 128 filters followed

y two fully-connected layers with 256 and 10 neurons each. S2

onsists of four convolutional layers with 64, 128, 256 and 512 fil-
ers respectively followed by two fully-connected layers with 512

nd 10 neurons each. In both S1 and S2, the convolutional lay-

rs are followed by rectification non-linearity (ReLU) layer along

ith max-pooling layers. Max-pooling is performed over a 2 × 2

ixel window, with stride 1. L1 is the same as network A used in

ection 4.1 .

We train the base models over softmax layer using the same

arameters used in the training for CIFAR-10 in Section 4.1 . The

espective training curves can be seen in Fig. 6 . The networks S1,

2 and L1 eventually achieve an accuracy of 60.05%, 60.78% and

6.54% with softmax layer respectively. We then remove the soft-

ax layer and extract features from the last layer to train the re-

pective DAGSVMs. As can be seen in Table 2 , with all three base

odels, we get around 3% improvement in overall accuracy. We

hen further improve the performance by fine-tuning the deep net-

orks for each binary classifier. Using the triplet loss, we are able

o improve the performance of 20, 35 and 36 classifiers in the DAG

sing base models S1, S2, and L1 respectively. When comparing our

188 N. Agarwal et al. / Pattern Recognition Letters 112 (2018) 184–190

Fig. 4. Histogram plots of test accuracies of the individual binary classifiers in the DAG before (Original) and after fine-tuning the base model A, B and C are shown in (a),

(b) and (c) respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Relationship between the performance of binary classifiers and overall solu-

tion when fine-tuning using triplet loss with base model A. The red points corre-

spond to every 100th iteration. (For interpretation of the references to color in this

figure, the reader is referred to the web version of this article.)

s

i

c

w

n

i

l

l

s

d

n
best method with softmax, the improvement in overall accuracy

reaches around 4% for all three base models.

4.3. Discussion

An interesting observation is that S1, having the smallest ar-

chitecture, is only able to improve the performance of 20 clas-

sifiers after fine-tuning whereas L1, with the largest architecture,

improves the performance of highest number of classifiers (36). A

similar trend can also be seen in Section 4.1 when models A, B

and C are compared. This fact is also naturally reflected in the per-

centage improvement of accuracy in Tables 1 and 2 . Since we fine-

tune over the full network in the experiments, we believe that in

a smaller network, which has lesser number of weights to refine,

it is difficult to bring about a significant change in the features for

improving classifier performance. Besides improving accuracy over

softmax layer, our method is also fast during runtime. This is be-

cause of the DAG structure introduced by this work, where we ex-

tract the features corresponding to the test images prior to classifi-

cation. For instance, method C + DAGSVM in Table 1 runs at about

1ms per frame. The same runtime applies for C

∗ + DAGSVM as well

since we extract the features corresponding to each and every im-

proved deep network prior to classification. On the other hand, C +

Softmax runs at about 200 ms per frame, which also includes the

time for feature extraction.

In order to explain the behavior of the solution obtained when

a multiclass optimization problem is transformed into several bi-

nary problems, we also show the relationship between the perfor-

mance of the binary classifiers and the overall solution in Fig. 5 .

We show this for one setting where base model A is being fine-

tuned using triplet loss to improve the performance of the corre-
ponding binary classifiers, as shown in Table 1 . As you can see

n Fig. 5 , the accuracy for the overall solution monotonically in-

reases as the average accuracy of the binary classifiers increases,

hich shows that improving the performance of the individual bi-

ary classifiers only has a positive impact on the overall solution.

Although we deal with datasets having small number of classes

n this work, our method can be extended to efficiently handle

arge number of classes as well. In [7] , the authors learn a re-

axed hierarchy of binary classifiers organized in a DAG structure to

olve the multiclass classification problem and show results on two

atasets, Caltech-256 [8] and SUN dataset [29] , both having large

umber of classes. To achieve a good trade-off between speed and

N. Agarwal et al. / Pattern Recognition Letters 112 (2018) 184–190 189

Fig. 6. Training curves corresponding to three different models with softmax on STL-10 dataset. Curve for model S1 is represented in (a). (b) shows the plot for model S2

and (c) represents the plot for model L1. Train and test accuracies are represented by blue and red curves respectively. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

a

fi

p

t

w

f

c

w

p

c

t

b

w

5

i

t

m

D

i

s

u

t

s

t

g

o

n

n

D

p

t

g

a

R

ccuracy, they learn two subsets of classes for each binary classi-

er which can be separated as well as possible, using a unified and

rincipled max-margin optimization. Instead of dealing with only

wo classes at each node, we can similarly learn such a hierarchy

hich will significantly reduce the number of classifier evaluations

or large number of classes. In addition, since the two subset of

lasses are learned in a way in which they can be separated as

ell as possible, we can further use the triplet loss to learn more

airwise discriminative features. Only in this case, the pair would

onsist of a subset of classes. While this may result in additional

ime for offline training, the runtime performance will continue to

e fast and realtime. As this thread is beyond the scope of this

ork, we leave it to be explored in future work.

. Conclusion and future work

In this paper, we present a multiclass classification method to

mprove upon the classification accuracies of existing deep archi-

ectures which use a softmax layer. Primarily, we remove the soft-

ax layer after training the deep network and replace it with a

AGSVM. Such a breakdown enables the network to focus on solv-

ng multiple binary problems, which are easier to solve. Such a de-

ign also helps to further improve the performance of the individ-

al classifiers by learning more discriminative features through the

riplet loss. Experimental results on CIFAR-10 and STL-10 datasets

how that our methodology can be applied to different deep archi-

ectures and that combining DAGSVM with fine-tuned base model

ives best results which is an improvement over the combination

f base model with softmax.

One major limitation of our proposed method is that it is

ot computationally feasible to be applied to problems with large

umber of classes, since we consider N C 2 binary classifiers in the

AG where N is the number of classes. Future work will deal with
roposing an end-to-end framework and learning a hierarchy for

he DAG to reduce the number of classifiers in such a way so that a

ood trade-off is achieved between computational complexity and

ccuracy.

eferences

[1] E.L. Allwein , R.E. Schapire , Y. Singer , Reducing multiclass to binary: a uni-

fying approach for margin classifiers, J.Mach.Learn.Res. 1 (December) (20 0 0)
113–141 .

[2] S. Bengio , J. Weston , D. Grangier , Label embedding trees for large multi-
-class tasks, in: Advances in Neural Information Processing Systems, 2010,

pp. 163–171 .

[3] A . Coates , A . Ng , H. Lee , An analysis of single-layer networks in unsupervised
feature learning, in: Proceedings of the fourteenth international conference on

artificial intelligence and statistics, 2011, pp. 215–223 .
[4] R. Collobert , S. Bengio , A gentle Hessian for efficient gradient descent, in:

Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP’04). IEEE
International Conference on, 5, IEEE, 2004, pp. V–517 .

[5] R. Collobert , K. Kavukcuoglu , C. Farabet , Torch7: a matlab-like environment for

machine learning, BigLearn, NIPS Workshop, EPFL-CONF-192376, 2011 .
[6] T.G. Dietterich , G. Bakiri , Solving multiclass learning problems via error-cor-

recting output codes, J.Artif.Intell.Res. 2 (1995) 263–286 .
[7] T. Gao , D. Koller , Discriminative learning of relaxed hierarchy for large-scale

visual recognition, in: Computer Vision (ICCV), 2011 IEEE International Confer-
ence on, IEEE, 2011, pp. 2072–2079 .

[8] G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset. Techni-

cal Report 7694, California Institute of Technology, 2007. URL http://authors.
library.caltech.edu/7694 .

[9] G. Griffin , P. Perona , Learning and using taxonomies for fast visual categoriza-
tion, in: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Con-

ference on, IEEE, 2008, pp. 1–8 .
[10] R. Hadsell , S. Chopra , Y. LeCun , Dimensionality reduction by learning an in-

variant mapping, in: Computer vision and pattern recognition, 2006 IEEE com-
puter society conference on, 2, IEEE, 2006, pp. 1735–1742 .

[11] K. He , X. Zhang , S. Ren , J. Sun , Deep residual learning for image recognition,

in: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778 .

[12] F.J. Huang , Y. LeCun , Large-scale learning with SVM and convolutional for
generic object categorization, in: Computer Vision and Pattern Recognition,

2006 IEEE Computer Society Conference on, 1, IEEE, 2006, pp. 284–291 .

http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0001
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0002
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0003
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0004
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0005
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0006
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0007
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0007
http://authors.library.caltech.edu/7694
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0008
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0009
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0010
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0011
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0011

190 N. Agarwal et al. / Pattern Recognition Letters 112 (2018) 184–190

[

[

[

[

[

[

[13] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images.
Vol. 1. No. 4. Technical report, University of Toronto, 2009.

[14] A. Krizhevsky , I. Sutskever , G.E. Hinton , ImageNet classification with deep con-
volutional neural networks, in: Advances in neural information processing sys-

tems, 2012, pp. 1097–1105 .
[15] L. Li , Multiclass boosting with repartitioning, in: Proceedings of the 23rd inter-

national conference on Machine learning, ACM, 2006, pp. 569–576 .
[16] M. Lin, Q. Chen, S. Yan, Network in network, arXiv preprint arXiv: 1312.

4400 (2013).

[17] J. Nagi , G.A. Di Caro , A. Giusti , F. Nagi , L.M. Gambardella , Convolutional neural
support vector machines: hybrid visual pattern classifiers for multi-robot sys-

tems, in: Machine Learning and Applications (ICMLA), 2012 11th International
Conference on, 1, IEEE, 2012, pp. 27–32 .

[18] J. Ngiam , Z. Chen , D. Chia , P.W. Koh , Q.V. Le , A.Y. Ng , Tiled convolutional neu-
ral networks, in: Advances in Neural Information Processing Systems, 2010,

pp. 1279–1287 .

[19] P. Panda, K. Roy, Attention tree: learning hierarchies of visual features for
large-scale image recognition, arXiv preprint arXiv: 1608.00611 (2016).

[20] J.C. Platt , N. Cristianini , J. Shawe-Taylor , Large margin dags for multiclass clas-
sification, in: Proceedings of the 12th International Conference on Neural In-

formation Processing Systems, MIT press, 1999, pp. 547–553 .
[21] R.E. Schapire , Using output codes to boost multiclass learning problems, in:

ICML, 97, 1997, pp. 313–321 .
22] F. Schroff, D. Kalenichenko , J. Philbin , FaceNet: a unified embedding for face
recognition and clustering, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2015, pp. 815–823 .
23] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, arXiv preprint arXiv: 1409.1556 (2014).
[24] Y. Tang, Deep learning using linear support vector machines, arXiv preprint

arXiv: 1306.0239 (2013).
25] O. Vinyals , Y. Jia , L. Deng , T. Darrell , Learning with recursive perceptual rep-

resentations, in: Advances in Neural Information Processing Systems, 2012,

pp. 2825–2833 .
26] V. Vural , J.G. Dy , A hierarchical method for multi-class support vector ma-

chines, in: Proceedings of the twenty-first international conference on Machine
learning, ACM, 2004, p. 105 .

[27] K.Q. Weinberger , L.K. Saul , Distance metric learning for large margin nearest
neighbor classification, J. Mach. Learn. Res. 10 (February) (2009) 207–244 .

28] J. Weston , F. Ratle , H. Mobahi , R. Collobert , Deep learning via semi-super-

vised embedding, in: Neural Networks: Tricks of the Trade, Springer, 2012,
pp. 639–655 .

29] J. Xiao , J. Hays , K.A. Ehinger , A. Oliva , A. Torralba , Sun database: large-scale
scene recognition from abbey to zoo, in: Computer vision and pattern recog-

nition (CVPR), 2010 IEEE conference on, IEEE, 2010, pp. 3485–3492 .
[30] S. Zhong , J. Ghosh , Decision boundary focused neural network classifier, in:

Intelligent Engineering Systems Through Artifcial Neural Networks, 20 0 0 .

http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0012
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0013
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0013
http://arxiv.org/abs/1312.4400
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0014
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0015
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0015
http://arxiv.org/abs/1608.00611
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0016
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0017
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0018
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0018
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1306.0239
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0019
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0020
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0021
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0022
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref0023
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref5722
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref5722
http://refhub.elsevier.com/S0167-8655(18)30274-5/sbref5722

	Improving multiclass classification by deep networks using DAGSVM and Triplet Loss
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Overview
	3.2 DAG
	3.3 Learning more discriminative features

	4 Experimental results
	4.1 CIFAR-10
	4.2 STL-10
	4.3 Discussion

	5 Conclusion and future work
	 References

