
Exploring Action Recognition without using Deep Learning

Nakul Agarwal1

Abstract— The goal of this report is to explore action recog-
nition without using deep learning methods. Deep learning has
brought about tremendous change in the fields of computer
vision and machine learning in the past decade. Convolutional
neural networks (CNNs) and the algorithms developed have
achieved high accuracy on multiple tasks such as semantic
segmentation, image classification, action recognition to name
a few. However, since the rise of deep learning, not a lot of
papers have shown proper comparison results with non deep
learning methods for specific tasks. In this report, I will use
some traditional computer vision methods for action recognition
and compare their results with the state-of-the-art deep learning
method. The experiments are run on the famous JHMDB
dataset.

I. INTRODUCTION

Computer vision can be succinctly described as finding
and telling features from images to help discriminate objects
and/or classes of objects. Computer vision has become one
of the vital research areas and the commercial applications
bounded with the use of computer vision methodologies
is becoming a huge portion in industry. The accuracy and
the speed of processing and identifying images captured
from cameras has developed through decades. Being the
well-known boy in town, deep learning is playing a major
role as a computer vision tool.

That being said, a big question which must be answered:
Is deep learning the only tool to perform computer vision?
No. Deep learning came to the scene of computer vision
couple of years back with AlexNet [1]. Before that,
computer vision was mainly based on image processing
algorithms and methods. The main process of computer
vision was extracting the features of the image. Detecting
the color, edges, corners and objects were the first step
to do when performing a computer vision task. These
features are human engineered and accuracy and the
reliability of the models directly depend on the extracted
features and on the methods used for feature extraction.
In the traditional vision scope, the algorithms like SIFT
(Scale-Invariant Feature Transform) [2], SURF (Speeded-Up
Robust Features) [3], BRIEF (Binary Robust Independent
Elementary Features) [4] plays the major role of extracting
the features from the raw image. The difficulty with this
approach of feature extraction in, for example image
classification, is that you have to choose which features to
look for in each given image. When the number of classes
of the classification goes high or the image clarity goes
down, its really hard to cope up with traditional computer

1 University of California, Merced nagarwal2@ucmerced.edu

vision algorithms.

Deep learning does not face this issue. Deep learning,
which is a subset of machine learning has shown a significant
performance and accuracy gain in the field of computer
vision. Arguably one of the most influential papers in ap-
plying deep learning to computer vision, in 2012, a neural
network [1] containing over 60 million parameters signif-
icantly beat previous state-of-the-art approaches to image
recognition in a popular ImageNet [5] computer vision
competition. The boom started with the convolutional neural
networks and the modified architectures of ConvNets. By
now it is said that some convNet architectures are so close to
100% accuracy of image classification challenges, sometimes
beating the human eye! The main difference in deep learning
approach of computer vision is the concept of end-to-end
learning. There is no longer need of defining the features
and do feature engineering as shown in Figure 1.

However, deep learning also has its drawback like, need
of having huge amount of training data and need of large
computation power. Therefore, it would be interesting to
see if we can somehow combine the benefits of traditional
computer vision methods and deep learning to come up with
an even better framework. But to do that, the first step is
to understand the difference between both the approaches.
In this report, I make a small step towards understanding
this difference by exploring a particular task, i.e. action
recognition, and showing quantitative results using both deep
learning and traditional computer vision methods.

II. METHODS

A. Dataset and Metric

Dataset. JHMDB [6] is a subset of the famous HMDB
dataset [7], It consists of 928 trimmed clips over 21 classes
involving a single person in action: brush hair, catch,
clap, climb stairs, golf, jump, kick ball, pick, pour,
pull-up, push, run, shoot ball, shoot bow, shoot gun,
sit, stand, swing baseball, throw, walk, wave. It has
36-55 clips per action class with each clip containing 15-40
frames. In summary, there are 31,838 annotated frames in
total. The person performing the action in each frame is
annotated with his/her 2D joint positions, scale, viewpoint,
segmentation, puppet mask and puppet flow. The
correspondence between body joints and x,y coordinates
is shown in Figure 2. There are 3 training and validation
splits, and results are averaged over all the splits.
Metric. I use the standard clip level accuracy to report the
results.

Fig. 1. Traditional machine learning flow vs deep learning flow

Fig. 2. The correspondence between body joints and x,y coordinates in
the JHMDB dataset

B. Features

I use the following types of features and their
representations:

• Pose
For each frame, I have the x- and y coordinates of
15 joints, as shown in Figure 2. I first normalize joint
positions w.r.t the scale of the underlying puppet. I then
use 3 types of features:

– translation of the normalized joint positions along
the x and y-coordinates (dx, dy).

– the direction of the translational vector (arctan(dydx))
– relative positions of normalized joint positions w.r.t

the puppet center in a sequence of T frames. T is
set to 7 empirically.
Note that due to the nature of the puppet annotation
tool, all 15 joint positions are available even if they
are not annotated when they are occluded or outside
the frame. In this case, the joints are in the neutral
puppet positions. Unless otherwise specified, I use

all 15 joints regardless of their visibility. There are
totally 75 descriptor types (30 for positions, 30 for
translations, and 15 for directions).

• Pose+
Since it has been shown in [8] that relational features
describing geometric relations between joints perform
better than using normalized joint positions, I also
extract a set of relational features:

–
(
15
2

)
= 105 distances between all the pairs of joints

– 105 orientations of the vector connecting two joints
– 3

(
15
3

)
= 1365 inner angles spanned by two vectors

connecting all the triples of joints.
All possible relational features are computed for
each frame, yielding 1575 descriptor types. In
addition to using relational features, I also use the
differences of relations between adjacent frames. I
also use pose features described previously (Pose).
Therefore, there are in total 3225 descriptor types
(75 for Pose, 1575 for relations, and 1575 for their
difference).

• I3D
I3D [9] is a very popular 3D convolutional deep model
used for action recognition. In this report, I make use
of I3D as a reference to compare with the traditional
computer vision methods.

III. RESULTS

The results can be seen in Table I. Below are some
implementation details.

A. Implementation details

Pose and Pose+. For each descriptor type, all the training
samples are used to generate a BoW (Bag of Words) [10]
model. I use a vocabulary size of 20, as each descriptor has
small dimensionality. For classification, I use a non-linear
SVM with RBF kernel. The multi-class classification is
done by LIBSVM [11] using a one-vs-all approach.

Method Split 1 Split 2 Split 3 Overall

Pose 70.35 69.20 68.50 69.35
Pose+ 76.20 75.10 74.90 75.40

I3D 83.91 82.30 81.80 82.67
TABLE I

QUANTITATIVE RESULTS USING DIFFERENT METHODS ON JHMDB

I3D. The I3D model I use has been pre-trained on
ImageNet [5] and Kinetics [9] dataset. I fine-tune on JH-
MDB using the pre-trained model. Each input sequence
has 20 frames. I use a batch size of 8 along with batch
normalization. Model is trained for 10k iterations using the
Pytorch [12] framework and 2 Nvidia Titan Xp GPUs.

IV. DISCUSSION

As expected, I3D performs the best. However, the pose
features extracted using the ground truth joint positions
and a SVM classifier also perform reasonably well. Also,
extraction and classification of these pose features takes
less time than training and evaluating the I3D model. This
shows that the ’right’ hand-crafted features and traditional
computer vision approaches can also do well while being
more efficient. However, the catch here is that it’s difficult
to identify the ’right’ kind of features using traditional
computer vision methods for a particular task.
Because of the above reason, it would be interesting to see
if we can somehow combine the benefits of both traditional
computer vision approaches and deep learning.

V. CONCLUSION

In this report, I make an attempt to understand the differ-
ence between traditional computer vision methods and deep
learning model on a particular task, i.e. action recognition. I
do this by quantifying results on a popular action recognition
dataset, JHMDB, using a deep learning model and traditional
computer vision approaches. Results show that although the
deep learning model performs better, the traditional computer
vision approaches (Pose features + SVM) also perform
reasonably well and it would be interesting to see if we can
somehow leverage the benefits of both traditional computer
vision approaches and deep learning to come up with an even
better framework.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[2] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91–110, 2004.

[3] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary
robust independent elementary features,” in European conference on
computer vision. Springer, 2010, pp. 778–792.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“Imagenet: A large-scale hierarchical image database,” in 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 2009,
pp. 248–255.

[6] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black, “Towards
understanding action recognition,” in Proceedings of the IEEE inter-
national conference on computer vision, 2013, pp. 3192–3199.

[7] H. Jhuang, H. Garrote, E. Poggio, T. Serre, and T. Hmdb, “A large
video database for human motion recognition,” in Proc. of IEEE
International Conference on Computer Vision, vol. 4, no. 5, 2011,
p. 6.

[8] A. Yao, J. Gall, and L. Van Gool, “Coupled action recognition and pose
estimation from multiple views,” International journal of computer
vision, vol. 100, no. 1, pp. 16–37, 2012.

[9] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 6299–6308.

[10] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical
learning in computer vision, ECCV, vol. 1, no. 1-22. Prague, 2004,
pp. 1–2.

[11] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[12] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in pytorch,” 2017.

	DIP_Final
	Final_Codes
	Codeintro
	demo_compute_pose_script_bow
	image_to_world
	positions_to_angle_relations
	positions_to_cartesian_trajectory
	positions_to_dist_relations
	positions_to_normalizepositions
	positions_to_ort_relations
	positions_to_radial_trajectory
	X_to_trajectory
	bow_formation
	train_i3d_withbatchnorm
	eval_i3d_withbatchnorm
	jhmdb_dataset_full

